Characterisation of the ( 111 ) growth planes of a type I 1 gas hydrate and study of the mechanism of kinetic inhibition by poly ( vinylp yrrolidone )

نویسندگان

  • Tim J. Carver
  • Michael G. B. Drew
  • Mark Rodger
چکیده

This work has developed techniques for studying the mechanism by which a hydrate growth inhibitor, i.e. poly(vinylpyrro1idone) (PVP), acts. The topology of a series of (111) faces of the type I1 clathrate hydrate, the postulated growth plane, have been studied in detail and used to calculate hydrogen-bond energy surfaces. N-Ethylpyrrolidone (NEP), the monomeric unit, has been used to sample adsorption on one of the ( 11 1) surfaces. The adsorption sites were found to be located around the large partial cavities, at positions determined by the location of the pendant hydrogens. There is an added van der Waals attraction between the NEP and the hydrate surface which is optimal when the pyrrolidone occupies the partial large (16-hedra) cavities on the hydrate surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Effect of Glycol Ethers with a Kinetic Inhibitor (Poly(VP-VCap)) for Sweet Natural Gas Hydrate Formation: (Concentration Effect of Glycol Ethers)

Formation of natural gas hydrate is a serious problem in the gas and oil industry because it can plug pipelines and destroy the equipment. This study aimes to evaluate the concentration effect of glycol ethers on their synergism with a commercial kinetic hydrate inhibitor (Luvicap 55W) in sweet natural gas-water systems at a constant temperature of 4 oC and pressure of 95 bar. Hydrate formation...

متن کامل

Modeling of Gas Hydrate Formation in the Presence of Inhibitors by Intelligent Systems

Gas hydrate formation in production and transmission pipelines and consequent plugging of these lines have been a major flow-assurance concern of the oil and gas industry for the last 75 years. Gas hydrate formation rate is one of the most important topics related to the kinetics of the process of gas hydrate crystallization. The main purpose of this study is investigating phenomenon of gas hyd...

متن کامل

Modeling of Gas Hydrate Formation in the Presence of Inhibitors by Intelligent Systems

Gas hydrate formation in production and transmission pipelines and consequent plugging of these lines have been a major flow-assurance concern of the oil and gas industry for the last 75 years. Gas hydrate formation rate is one of the most important topics related to the kinetics of the process of gas hydrate crystallization. The main purpose of this study is investigating phenomenon of gas hyd...

متن کامل

Experimental Investigation of Natural Gas Components During Gas Hydrate Formation in Presence or Absence of the L-Tyrosine as a Kinetic Inhibitor in a Flow Mini-loop Apparatus

Hydrates are crystalline compounds similar to ice, with guest molecules like methane and ethane trapped inside cavities or cages formed by the hydrogen bounded framework of water molecules. These solid compounds give rise to problems in the natural gas oil industry because they can plug pipelines and process equipments. Low dosage hydrate inhibitors are a recently developed hydrate control tech...

متن کامل

Experimental Measurement and Kinetic Modeling of Ethane Gas Hydrate in the Presence of Sodium Dodecyl Sulfate Surfactant

  Abstract: In this work, the kinetics of ethane hydrate formation has been studied experimentally and a kinetic model based on chemical affinity has been described for predicting the hydrate growth process in the stirred batch reactor at a constant volume. The experiments were done with both pure water and aqueous solution of sodium dodecyl sulfate (SDS). The effect of SDS on formation kineti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003